學術發表

學術發表內容
作者/篇名
Ting-An Lin, Chi-Wei Huang, Chia-Cheng Wei*/Early-life perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) exposure cause obesity by disrupting fatty acids metabolism and enhancing triglyceride synthesis in Caenorhabditis elegans
發表日期
2022-10-01
張貼單位
黃紀惟 助理教授
期刊名
Aquatic Toxicology
頁碼
251, 106274
內  容

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are widely used and considered as emerging persistent pollutants, posing a potential threat to the aquatic ecosystem due to their metabolic toxicity. However, the effects of early-life PFOA and PFOS exposure on metabolic disruption and underlying mechanisms are not fully understood. Therefore, we investigated the effects of early-life PFOA or PFOS exposure on lipid accumulation, feeding behaviors, fatty acids composition, and possible genetic regulation using the nematode Caenorhabditis elegans as an in vivo model. Our results showed that low concentrations of PFOA and PFOS (0.1 and 1 μM) induced obesity in C. elegans, which was not due to the increased feeding rate. The altered fatty acid composition illustrated the decrease of saturated fatty acids and the increase of polyunsaturated fatty acids. Furthermore, the mutant assay and mRNA levels revealed that fatty acid desaturation related genes mdt-15, nhr-49, fat-6 as well as fatty acid (fasn-1) and triglyceride (TG) (dgat-2) synthesis related genes, were associated with the increased body fat, TG, and lipid droplet (LD) contents in C. elegans exposed to PFOA and PFOS. Hence, this present study provides the genetic regulatory information of PFOA and PFOS induced metabolic disruption of lipid metabolism and obesity.

資料維護人:黃紀惟 助理教授 黃OOOOOO授
更新日期:2022-08-29
本網站內容所有權歸國立高雄科技大學-海洋環境工程系暨研究所所有,禁止任意轉載、複製或做商業用途
建議使用Google Chrome,解析度1920*1080以獲得最佳瀏覽效果

TOP